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1. INTRODUCTION

For g E C[a, b] define

II g II = sup {I g(x) I: a ~ x ~ b}.

Let F be an approximating function with parameter such that P is the
parameter space and F(A, .) E C[a, b] for all A E P. Let u, v be continuous
mappings into the extended realline, U < v. The approximation problem is:
for a given IE C[a, b], U ~I ~ v, to find A* E P satisfying the restraint

U ~ F(A *, .) ~ v (1)

for which e(A) = III - F(A, .)[! is minimal. The parameter A* is called
best to I and F(A *, .) is called a best restrained minimax approximation to f

The case U = - 00, v = 00 corresponds to Chebyshev approximation.
The cases u = - 00, v = I and u = I, v = 00 correspond to one-sided
approximation. The case U = 0, v = 00 is that of nonnegative approximation
of nonnegative functions.

In [7, p. 72] the related problem of interpolation with restraints was
studied.

The dissertation [8] studied a problem less general than that of this note,
but included results on approximation with respect to a weight function and
on the continuity of the best approximation operator.

2. ALTERNATING FAMILIES

We will be solely concerned with the case in which (F, P) is an alternating
family on [a, b], that is, F has a degree p(A) > °at all parameters A (or,
equivalently, F(A, .) is best to I on [a, b] if and only ifI - F(A, .) alternates
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peA) times on [a, b)). For details see [I, p. 225] or [3, pp. 17~22]. Examples
include families of power polynomials, polynomial rational families, uni
solvent families, and some families of exponential functions.

DEFINITION. F has property Z of degree 11 at A if F(A, .) - F(B, 'j having
n zeros implies F(A,') F(B, .). Double zeros (defined later) are not
counted twice.

DEFINITION. F has property Ot of degree n at A, if for any integer m < 11,

any sequence {Xl"'" Xm } with

a = X o < Xl < ... < Xm+l = b,

any sign a, and any real € with

°< € < min{xJ+l - Xj : j = 0, ... , m},

there exists a B EO P, such that

II F(A, .) - F(B, ')1 < €,

sgn(F(A, x) - F(B, x» = a, a :s;; x :s; Xl - €

= a(-l)j, Xj + € :s; X ,~ Xj+l - €

= a(-I)IH, X m + € :s;; X :s; b.

In case m = 0, the above sign condition reduces to

sgn(F(A, .) - F(B, .» = a.

DEFINITION. F has degree n at A if F has property Z of degree 11 at A

and property Ot of degree n at A. Denote this degree by peA).

DEFINITION. A point x in (a, b) such that g(x) = °but g does not change
sign is called a double zero of g.

LEMMA I. Let F have positive degree at A and B. IfF(A, .) - F(B, .) has
peA) zeros, counting double zeros twice, then F(A, .) == F(B, ').

This lemma first appeared in [I, p. 225] without a detailed proof.
A generalization with a complete proof appears in [2, Lemma 7].
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3. CHARACTERIZATION OF BEST ApPROXIMATION
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To give added generality we will let u be upper semicontinuous into the
extended real line R and v be lower semicontinuous into R (for definitions
see [6]). It follows that F(A, .) - u is lower semicontinuous into R and so
attains its infimum on a closed set. Similarly, v - F(A, .) is lower semi
continuous into R and so attains its infimum on a closed set.

DEFINITION. X is a minus point off - F(A, .) if j(x) - F(A, x) = ~e(A)

or F(A, x) = v(x).

DEFINITION. X is a plus point off - F(A, .) if j(x) - F(A, x) = e(A) or
F(A, x) = u(x).

By continuity of f - F(A, .) and lower semicontinuity of F(A, .) - u, it
follows that for F(A, .) :? u, the set of plus points is closed. Similarly, for
F(A, .) ~ v, the set of minus points is closed. There is no point which is both
a minus point and a plus point unless e(A) = O. Suppose, for example, we
have j(x) - F(A, x) = -e(A) and F(A, x) == u(x), then j(x) - u(x) =

-e(A). As f satisfies f:? u we can only have e(A) = O. By continuity of
If - F(A, ')1 there is a point x with I j(x) - F(A, x)1 = e(A).

DEFINITION. f - F(A, .) is said to alternate n times with respect to u, v
if there is a set {xo ,... , x n}, a ~ Xo < '" < X n ~ b, such that the points
are alternately plus points and minus points. The set is called an alternant.

Before characterizing best approximations in terms of alternation, we
develop a de la Vallee-Poussin type result which characterizes near-best
approximations.

DEFINITION. X is a weak minus point off - F(A, .) ifj(x) - F(A, x) < 0
or F(A, x) = v(x). x is a weak plus point off - F(A, .) ifj(x) - F(A, x) > 0
or F(A, x) = u(x).

LEMMA 2. Let A satisfy (1). Let p(A) = nand Xo < Xl < ... < Xn be
alternately weak plus points and weak minus points off - F(A, '). Then for
any parameter B for which (1) is satisfied and at which F has a degree,
F(B, .) ~ F(A, '),

max{1 j(x;) - F(B, xi)1 : i = 0, ..., n}

> min{1 j(Xi) - F(A, Xi) I : i = 0, ... , n, F(A, Xi) =1= u(xi), F(A, Xi) =1= V(Xi)}
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Proof Suppose not. Assume without loss of generality that X o is a weak
plus point, then we have

(-I)i[F(B, Xi) - F(A, Xi)] O. 0,00" 1/, (2)

and F(A, .) - F(B, .) must have n zeros counting double zeros twice. By
Lemma 1, F(A, .) ~ F(B, .).

Note. In the case F(A, x,) is alternately U(Xi) and v(x,) , the right-hand
side in the lemma is undefined. Assume without loss of generality that
F(A, xo) = u(xo), then for B satisfying (I) we have (2) and it follows that
F(B, .) =F(A, '), that is, there is only one acceptable approximation.

LEMMA 3. Let F have a positive degree at all parameters and peA) 11.

Let f - F(A, .) alternate n times and A satisfy (1), then A is best.

Proof Let {xo '00', x n } be an alternant. In the case F(A, x,.) is alternately
U(Xi) and V(Xi)' F(A, .) is the only acceptable approximant by the note
above. If this is not the case then there exists j such that F(A, x;) ef= u(Xj),
F(A, Xi) ef= V(Xi)' hence I f(x;) - F(A, Xi) 1 = e(A). By Lemma 2, if B satis
fies (1), pCB) > 0 and F(B, .) ct:- F(A, '),

e(B) :;:?; max{1 f(Xi) - F(B, xi)i : i = 0'00" n} > e(A).

THEOREM. Let F have a positive degree at all parameters. A necessary and
sufficient condition for A satisfying (1) to be a best approximation is that
f - F(A, .) alternate peA) times with respect to u, u.

Proof Sufficiency follows from Lemma 3. We now prove necessity.
Suppose f - F(A, .) has no alternations. Assume without loss of generality
thatf - F(A, .) has a plus point. Let M ~= inf{f(x) - F(A, x): a x ~ b}.
If M = -e(A) then there exists x such that f(x) - F(A, x) =-e(A) and
x is a minus point. We would then have a plus point and a minus point,
hence at least one alternation, which is contrary to hypothesis. Let
o=~ M + e(A), then 0 > O. There is no point y such that F(A, y)= v(y)
for such a point would be a minus point, which would give alternation. As
v - F(A, .) is lower semicontinuous, it attains its infimum TJ which is there
fore positive. Let E = min{o, TJ}/2 and by property ot choose BE P such that

F(A, .) < F(B, .) < F(A, .) + E.

As U ~ F(A, -) we have U < F(B, .) and as F(A, -) + E < t', we have
F(B, .) < v, hence B satisfies (I). Further,

-e(A) ~f - F(A, .) - 0 <f - F(A, .) - E <f - F(B, .)

< f - F(A, .) ~ e(A).
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Next consider the case where f - F(A, .) alternates exactly m times, 0 <
m < peA). We can divide [a, b] into m + I subintervals lk' k = 0, ... , m,
such that none contains both minus points and plus points, and no interior
endpoint of the subintervals is a plus or minus point. Let Jk be a closed
interval in lk containing the plus or minus points which are not endpoints
of [a, b] in its interior. Assume without loss of generality that 10 contains
plus points. Define

M k = inf{(f(x) - F(A, x))(-1)k: x E Jk}.

As lk is closed and contains no minus (plus) points for k even (odd),
Mk :> -e(A). Define

o= min{Mk : k = 0, ... , m} + e(A),

then 0 :> 0 and

lex) - F(A, x) - 0 ;? -e(A),

lex) - F(A, x) + 0 <; e(A),

X E Jk , keven,

x E Jk , k odd.

Let k be even. There is no point x E J k such that F(A, x) = vex), for such a
point would be a minus point. As v - F(A, .) attains its infimum on closed
Jk , it follows that there exists iLl, :> 0 such that

vex) - F(A, x) ;? iLk , X E Jk , k even.

A similar argument shows that for k odd, there exists iLl' :> 0 such that

F(A, x) - u(x) ;? iLk, X E Jk , k odd.

Define /L = min{/Lk : k = 0'00" m}. Let K = [a, b] '""'-' U~~o Jk • Define p =
sup{1 lex) - F(A, x)l: x E K}. As K has no plus or minus points and is
closed, p < e(A).

Define

L = inf{inf{vex) - F(A, x), F(A, x) - u(x)}: x E K}.

As v - F(A, '), F(A, .) - u are lower semicontinuous, L is attained on K
and L:> O. Let E = min{o, /L, L, e(A) - p}/2. By property Of of degree
peA) at A, we can choose B E P such that II F(A, .) - F(B, ')11 < E and

sgn(F(B, x) - F(A, x)) = (_I)k,
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u(x) c::;; F(A, x) < F(B, x) < F(A, x) -t- E < F(A, x) -t !-Lk vex),

--e(A) c::;; f(x)- F(A, x) - 0 f(x) - F(A, x) - E < f(x) - F(B, x)

< f(x) - F(A, x) e(A).

For x E Jk , k odd, we have

u(x) F(A, x) -!-Lie < F(A, x) - E < F(B, x) < F(A, x) vex),

-e(A) c::;; f(x) - F(A, x) < f(x) - F(B, x) < f(x) - F(A, x) -!- E

< f(x) - F(A, x) + 0 e(A).

Let x E K, then

I f(x) - F(B, x)1 c::;; i f(x) - F(A, x)1 + 1F(A, x) - F(B, x):

.(; p + E p -i-- (e(A) - p)/2 = (e(A) + p)/2 < e(A),

vex) ~ F(A, x) + L > F(B, x) - E -'- L > F(B, x),

u(x) c::;; F(A, x) - L < F(B, x) + E - L < F(B, x).

Combining the inequalities for x in Jk• (k even), in Jk (k odd), and K, we have

u < F(B, .) < D,

-e(A) < f - F(B, .) < e(A).

Hence F(B, .) is a better approximation and necessity is proven.

COROLLARY. A best approximation to f is unique.

Proof By the theorem a best approximation F(A, .) must have an
alternant of length peA) + 1. We apply Lemma 2 to get e(B) > e(A) if
F(B, .) :t:: F(A, ').

The case where u may equal D at some points is more complex. Some
cases in polynomial approximation are given in [5]. It is possible for u and
v to agree at only one point and only one approximation exists satisfying (1).

EXAMPLE. Let [a, b] = [0, l] and the approximating family be all power
polynomials of degree n. Let u(x) = ~xn+1, vex) = x n+1, then the only
approximant which lies between u and v is the zero approximant.
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